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COVER FEATURE VLSI FOR THE INTERNET OF THINGS

Exploring Hardware 
Heterogeneity to Improve 
Pervasive Context 
Inferences 
Chenguang Shen and Mani Srivastava, University of California, Los Angeles 

Context-aware inference apps have become pervasive 

as a result of the Internet of Things (IoT). However, 

most of these apps run continuously on a single device, 

resulting in limited sensor coverage and high energy 

consumption. Recent advances in IoT devices, specifically 

hardware heterogeneity, can be leveraged to improve the 

accuracy and energy efficiency of context inferences. 

Advances in VLSI technologies have led to the 
integration of unprecedented sensing, com-
munication, and computation capabilities 
in today’s devices, allowing them to con-

tinuously observe individuals and their spaces. Smart-
phones have evolved from communication devices to 
powerful personal computing platforms, and connected 
devices such as smartwatches, cameras, motion sensors, 
thermostats, and energy meters—collectively dubbed 
the Internet of Things (IoT)—have rapidly permeated 
our lives, leading to the emergence of an ecosystem of 
context-aware apps. These apps—such as Moves, Map-
MyRun, Strava, Runkeeper, and Vimofit—use sensors 

like GPS, microphones, accelerometers, and gyroscopes 
to make diverse inferences about user activities and con-
texts, including transportation mode, location, physical 
exercise, mood, and stress level. However, there are two 
major drawbacks associated with the execution of con-
text inferences on IoT devices: limited sensor coverage 
and inference accuracy, and high energy consumption. 

Sensor coverage and inference accuracy are critical 
for inference fidelity, which largely depends on the rel-
ative position of the sensing device to the user. Most of 
today’s inference apps run on a single device, such as a 
smartphone, and tend to rely on phone inertial sensor 
readings, requiring users to carry their smartphone with 
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them. This means that whenever users leave the phone 
elsewhere (for example, on a desk) to focus on other tasks 
or to charge the phone, the sensors cannot capture any 
meaningful data, resulting in limited sensor coverage and 
poor inference accuracy. 

In addition, many IoT devices are battery powered and 
have a limited energy budget. The algorithms used by con-
text inference apps, including feature computations and 
classifications, are computationally expensive and power 
hungry. They often need to run continuously in the back-
ground for just-in-time feedback, notifications, and inter-
ventions. Currently, most always-on context inferences run 
on the device’s main app processor, representing a signifi-
cant portion of the device’s overall workload and energy 
consumption. This high power consumption is usually 
exacerbated by the use of power-hungry sensors like GPS 
and cellular radio. 

In response, we propose leveraging advancements in IoT 
devices, specifically hardware heterogeneity, to improve 
the accuracy and energy efficiency of context inferences. 
This includes both device and processor heterogeneity. 

HARDWARE HETEROGENEITY
Using smartwatches as an example, we demonstrate the 
use of heterogeneous IoT devices and processors to improve 
context inferences. 

Device heterogeneity 
Unlike previous wearable devices dedicated to fitness 
tracking, today’s commercial off-the-shelf (COTS) smart-
watches such as the Apple Watch (iOS) and the Moto 360 
(Android) benefit from powerful hardware resources such 
as CPUs and RAM similar to those of modern smartphones. 
With seamless connection to phones via Bluetooth Low 
Energy (BLE), these wearables can act as user portals for 
smartphone apps or host standalone apps. These devices 
also provide a rich set of sensors to support context infer-
ences. Their lightweight nature makes them ideal for 
always-on context monitoring. Moreover, watches are less 
obtrusive than phones because wearing them is less likely 
to interfere with a user’s daily routine. By coordinating 
smartwatches and smartphones, sensing and inference 
workloads can be alternated between an available device at 
any time for improved sensor coverage and inference accu-
racy. Using a watch and a phone for inference executions, 
we achieved up to 37 percent improvement in inference 
accuracy and up to 61 percent less energy consumption. 

Processor heterogeneity
Modern mobile processors such as the Qualcomm Snapdragon 
(www.qualcomm.com/products/snapdragon/processors) are 
sophisticated systems on chip (SoCs), where the main app pro-
cessors are complemented by heterogeneous coprocessors. 
We demonstrate the improvement of energy efficiency by 
offloading computation from the main app processor (CPU) 
to a secondary low-power processor. Recently, mobile chip 
vendors have undertaken efforts to make these previously 
hidden coprocessors—such as the digital signal processor 
(DSP)—programmable. For instance, the Snapdragon 820 
series SoC includes a Hexagon 680 DSP (developer.qualcomm 
.com/software/hexagon-dsp-sdk/dsp-processor) that can be 
custom-programmed and operates in the ultra-low-power 
range. Offloading the classification stage commonly seen in 
an inference pipeline to a DSP resulted in up to 60 percent 
energy savings with a negligible effect on latency. 

IoT device heterogeneity
To explore the benefits of leveraging device and processor 
heterogeneity, we showcase the specifications of both IoT 
devices and mobile SoCs.

Table 1 compares the hardware specifications of popu-
lar smartwatches and smartphones. Smartwatches today 
have rather powerful CPUs, RAM, and radios, enabling 
them to execute standalone apps without any assistance 
from smartphones. Both the Apple Watch and the Moto 
360 contain radios and sensors similar to today’s smart-
phones, including optical-based heart-rate sensors. How-
ever, because of volume and weight limits, smartwatches 
have a much smaller battery capacity than smartphones. 
Due to the similarity in smartwatch hardware, we chose 
the Moto 360 as an example platform to benchmark our 
app scenarios. 

To further analyze the feasibility of running context 
inferences on smartwatches, we created basic power pro-
files of a Moto 360 watch and a Nexus 5 phone (see Table 2). 
We measured the power consumption of the watch and the 
phone—both connected via BLE—and profiled both devices 
for screen off (sleeping) and screen on, because their nor-
mal power consumption is typically between these two 
extreme cases. Compared with the Nexus 5 phone, the Moto 
360 watch generally has lower power consumption. How-
ever, the power difference between screen off and screen 
on is much more significant on the watch than on the 
phone, requiring a detailed study of the power and energy 
tradeoffs of inference executions. 
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Heterogeneous mobile SoCs
Mobile processors are no longer simply app processors, but are 
sophisticated SoCs where the main app processors are com-
plemented by a set of heterogeneous processors. Table 3 sum-
marizes the specifications of mainstream mobile SoCs today. 
The types of heterogeneity in mobile SoCs can be categorized 
as loosely coupled or tightly coupled. 

Loosely coupled. Mobile SoCs include a set of embedded 
processors such as DSPs and GPUs that handle specialized 
work such as media processing and low-level sensor I/O. 
These loosely coupled heterogeneous processors typically 
have no cache coherence with the app processor, and have a 
different instruction-set architecture than app processors. 
The coprocessors are usually hidden from the app develop-
ers and are instead limited to running prebuilt firmware 
provided by the platform manufacturer. Recently, mobile 
processor vendors have been making conscious efforts to 
expose the coprocessor heterogeneity to the app developers, 
allowing them to program the DSPs. The Hexagon DSP is a 
representative example of such an embedded processor, so 
we used it as an example of a secondary processor to show-
case the benefits of leveraging processor heterogeneity.

Tightly coupled. ARM’s big.LITTLE (www.arm.com/products 
/processors/technologies/biglittleprocessing.php), which 
couples relatively slower, lower-power processor cores with 

more powerful and power-hungry ones, creates a multi-
core processor that can adjust better to dynamic comput-
ing needs and uses less power than clock scaling alone. 
big.LITTLE is a tightly coupled heterogeneous architecture 
because the big cores and the little cores typically have cache 
coherence and share the same instruction-set architectures. 
Nevertheless, they have different power-performance oper-
ating points. As shown in Table 3, major mobile SoC man-
ufacturers today all adopt the big.LITTLE architecture by 
pairing big cores with LITTLE cores as app processors.

SYSTEM DESIGN
Our system design approach leverages hardware hetero-
geneity to improve inference accuracy and to reduce the 
energy consumption of always-on context inferences. 

Context-aware apps employ a suite of machine-learning 
algorithms to extract semantically meaningful inferences 
from sensor data. Underlying the various types of context 
inferences, we abstracted out a canonical inference pipe-
line, shown in the upper part of Figure 1. Apps today typ-
ically subscribe to raw sensor datastreams, and extract 
features to reduce the dimensionality of sensor data. Apps 
then perform classification over the stream of extracted 
features using pretrained machine-learning models. The 
classification returns context labels (for example, which 
class the current context falls under) for notifications and 
corresponding actions. 

TABLE 1. Comparison of device hardware platforms.

Device
System on 
chip (SoC) CPU RAM Storage Radio Battery Weight Sensors

Apple 
Watch

Apple S1 520 
MHz S1

512 
Mbytes

8 Gbytes Bluetooth Low Energy 
(BLE)/Wi-Fi/near-field 
communication (NFC)

3.8 V 205 
mAh (milliamp 
hours)

25 g Accelerometer, gyroscope, 
pedometer, heart rate, 
microphone

Moto 360 
watch

TI OMAP 
3630

1 GHz 
OMAP3

512 
Mbytes

4 Gbytes BLE/Wi-Fi 3.8 V 320 
mAh

49 g Accelerometer, gyroscope, 
pedometer, heart rate, 
microphone, light

Nexus 5 
phone

Snapdragon 
800

2.3 GHz 
Krait

2 
Gbytes

16/32 
Gbytes

BLE/Wi-Fi/NFC 4.3 V 2300 
mAh

130 g Accelerometer, gyroscope, 
pedometer, microphone, 
compass, proximity, light, GPS

TABLE 2. Comparison of device power profiles. 

Device Power (W) Current (mA) Lifetime (h)

Moto 360 watch (screen off) 0.013 3.283 97.472

Moto 360 watch (screen on) 0.550 142.520 2.245

Nexus 5 phone (screen off) 0.254 58.913 37.343

Nexus 5 phone (screen on) 1.853 435.260 5.057
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Increasing inference accuracy
Instead of running inferences on a single smartphone, the 
inference pipeline can run across heterogeneous devices. 
The execution can be offloaded to another IoT device, such 
as a smartwatch, whenever the phone is unavailable for bet-
ter sensor coverage and inference accuracy. 

The hardware comparison previously mentioned sug-
gests that today’s smartwatches have powerful computa-
tion resources and sensors that enable apps to draw infer-
ences. Smartwatch users are more likely to wear the watch 
throughout the day than they are to carry their phone with 
them, except for specific periods such as sleep. Because 
phone placement can greatly affect sensor readings (in other 
words, a phone cannot capture meaningful human move-
ments when not being carried by the user), watches can 
help increase sensor coverage and inference accuracy by 
continuing the inference execution even when the phone is 
away from the user. Such situations can be identified when 
movements are detected by the watch but not by the phone. 

Optimizing energy consumption
The energy benefit of leveraging hard-
ware heterogeneity is two-fold.

Offloading to low-power processors. To 
show that considerable energy savings can 
be achieved by offloading the execution of 
inference algorithms from the main app 
processor to the DSP available in mobile 
SoCs, we offloaded the classification 
stage as an example. Compared to feature 
extraction, classification computation is 
more unstructured, possibly leading to 
larger energy savings by the DSP offload. 

Replacing high-energy sensors. Sensors 
on IoT devices, such as smartwatch iner-
tial sensors, can provide additional infor-
mation about user behaviors and contexts. 

We use smartwatches as an example to represent heteroge-
neous IoT devices. By using smartwatches to run inferences, 
we can reduce the energy consumption of apps by eliminating 
the use of high-power sensors such as a phone’s GPS.

PRELIMINARY RESULTS
Here, we present a set of preliminary experimental results 
to demonstrate the improvements in inference accuracy 
and energy efficiency as a result of exploiting hardware 
heterogeneity.

Example app scenarios
To investigate the feasibility of offloading classification 
algorithms to the DSP and to show potential gains in energy 
efficiency, we developed an activity recognition app and a 
speaker recognition app as example context inferences.

Activity recognition. Motivated by prior work in the mobile 
sensing space (see the “Related Work” sidebar), our activity 

TABLE 3. Specifications of latest mobile SoCs. 

Mobile SoC App processor (CPU) Coprocessor Used by

Qualcomm Snapdragon 821 Dual Kyro 2.15 GHz + Dual Kyro 
1.59 GHz

Hexagon 680 digital signal 
processor (DSP), Adreno 530 GPU

Google Pixel, Pixel XL

Apple A10 Dual Hurricane 2.34 GHz + Dual 
Zephyr (ARMv8-A)

M10 motion processor, 6-core GPU Apple iPhone 7, iPhone 7 Plus

Samsung Exynos 8890 Quad Exynos M1 2.3 GHz + Quad 
Cortex-A53 1.6 GHz

ARM Mali-T880 GPU Samsung Galaxy S7, Galaxy Note 7

HiSilicon Kirin 950/955 Quad Cortex-A72 2.5 GHz + Quad 
Cortex-A53 1.8 GHz

ARM Mali-T880 GPU Huawei Mate 8, Huawei P9

NVIDIA Tegra X1 Quad Cortex-A72 1.9 GHz + Quad 
Cortex-A53 1.3 GHz

Maxwell GPU NVIDIA Shield TV, Google Pixel C

Inference pipeline 

Sensor
data 

Data
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Sensing and
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Execute
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FIGURE 1. Overview of the proposed system architecture, which uses both heteroge-
neous devices and heterogeneous processors to achieve better inference accuracy and 
energy efficiency. A canonical inference pipeline, which outputs context labels from 
the sensor datastream, is shown in the upper section. SoC: system on chip; DSP: digital 
signal processor.
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recognition app uses smartwatch accel-
erometers in addition to traditional 
phone accelerometers. The app uses 
machine-learning models to generate 
activity labels and can be extended to 
identify more classes of activities.

We used two datasets to train mod-
els and to benchmark the app. The first 
one was collected by TU Darmstadt1 and 
includes phone accelerometer data over a 
seven-day time period and activity labels 
of {dinner, commuting, lunch, work, 
undefined}. The second dataset was col-
lected from our own user study where 
participants recorded synchronized 
watch accelerometer, phone accelerom-
eter, and phone GPS data as well as labels 
of {still, walking, commuting}. The total 
duration of this dataset is 6.33 h.

Speaker recognition. In this classical 
speaker recognition app, we trained 
a Gaussian mixture model (GMM) for 
each speaker. A likelihood score was cal-
culated for each sound clip, represent-
ing the probability of the sample being 
generated by the GMM. The speaker 
corresponding to the maximum like-
lihood was set as the output. We used 
the TIDIGITS dataset (catalog.ldc.upenn 
.edu/ldc93s10) for training, and a set 
of Mel-frequency cepstral coefficients 
(MFCCs) featured on a 3-s sound clip at 
8 kHz was used as one sample.

Experiment: improving 
inference accuracy
We first quantified the accuracy 
improvements of running activity rec-
ognition using both a Moto 360 watch 
and a Nexus 5 phone instead of using 
only a single phone. 

Inference composition. The infer-
ence of activity recognition was com-
posed using several different sensor 
combinations (SCs):

RELATED WORK

Although additional sensors and computational offloading are 
found in prior approaches, they often rely on custom hard-

ware to improve the inference accuracy and energy efficiency. 
Our work quantifies the benefit of leveraging hardware heteroge-
neity seen in commercial off-the-shelf devices. Recent work has 
started using smartwatches to assist context inferences running 
on smartphones, such as exercise tracking1 and driving habit 
detection.2 In the field of computation offloading, Moo-Ryong Ra 
and his colleagues examined the partitioning of different modules 
in a sensing pipeline between processors to reduce the overall 
energy consumption.3 Felix Xiaozhu Lin and his colleagues com-
pared loosely coupled heterogeneous processor cores with tightly 
coupled ones.4 DSP.Ear5 and DeepEar6 demonstrate the perfor-
mance and energy implications of executing inferences as digital 
signal processor (DSP) modules, including both traditional models 
and deep neural networks. 

We previously wrote about leveraging processor heterogeneity 
in a workshop paper that focused on mobile phones but did not 
cover device heterogeneity.7 The cross-device framework pre-
sented here in the main text is related to our previous work8 but 
has a different and more specific implementation. 
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›› SC1: watch accelerometer only.
›› SC2: phone accelerometer only.
›› SC3: watch accelerometer and phone accelerometer.
›› SC4: phone accelerometer and phone GPS.
›› SC5: watch accelerometer, phone accelerometer, and 
phone GPS.

We then calculated features from the raw sensor 
datastream by applying a 1-s classification window, and 
trained classification models such as decision tree, ran-
dom forest, and support vector machine (SVM) using 
each SC. Based on our experiments, we chose to use the 
decision tree for activity recognition considering both 
accuracy and simplicity.

Results. Motivated by observations from our user study 
where participants were asked to perform workout exercises 
and activities while carrying a smartphone and wearing 
a smartwatch, we created an example user daily schedule. 
Based on the schedule, a user wears a smartwatch through-
out the entire day except while sleeping (16 h). On the other 
hand, a user only carries a smartphone for half of the work-
ing day (4 h) plus while driving (1.5 h) and during lunch (0.5 
h). The phone is with the user (and thus can capture mean-
ingful sensor data) for only 6 of the 16 hours in a day, and is 
placed elsewhere for the remaining 10. Therefore, the total 
duration of a user carrying both the watch and the phone 
(TWithPhone) is 6 h each day, while the total duration of a user 
carrying only the watch (TWithoutPhone) is 10 h.

We define real inference accuracy as a weighted average 
of inference accuracy numbers considering the location of 
the device:

Acc
Real

= 1
T
Total

Acc
WithPhone

× T
WithPhone

+ Acc
WithoutPhone

× T
WithoutPhone

⎛
⎝

⎞
⎠ .

� (1)

If the inference samples sensor data from the watch (such 
as SC1, SC3, and SC5), AccWithPhone will be the inference 

accuracy using sensors from both the phone and the watch, 
and AccWithoutPhone will be the accuracy using only watch 
sensors. If the inference takes only phone sensor data (such 
as SC2 and SC4), AccWithPhone will be the accuracy using 
only phone sensors. However, when the phone is placed else-
where (AccWithoutPhone), the inference cannot capture any 
meaningful inertial data and the app has no way to infer 
the user’s current activity other than performing a random 
guess. Given that there are other heuristics to infer the user 
activity, such as using GPS and time, we set AccWithoutPhone 
in these cases to be 50 percent. Finally, TTotal is the total time 
of the day except sleep (16 h). 

Figure 2 shows the real inference accuracy of activity 
recognition considering the routine above. Relying solely 
on the phone sensors for activity recognition will lead to 
poor real inference accuracy due to the phone’s limited 
sensor coverage, as seen in SC2 (64.78 percent) and SC4 
(65.51 percent). Accuracy is notably improved with the 
help of smartwatches. Using only the watch sensor (SC1) 
results in a real accuracy of 87.50 percent, or a 35.1 per-
cent improvement compared with using the phone only. 
Moreover, fusing the watch and phone sensors together 
improves the real accuracy of activity recognition to 87.85 
percent, or by 35.6 percent, without the GPS (SC3), and to 
89.01 percent, or by 37.4 percent, with the GPS (SC5). Note 
that the classification model used here is relatively simple, 
so the additional information provided by fusing both the 
phone and watch accelerometers does not significantly 
improve accuracy. However, using more sensors would 
detect a wider range of movements if the app targets com-
plex activities such as exercise. 

Experiment: optimizing energy consumption
Here, we describe the energy optimization of continuous 
context inferences with the help of both processor hetero-
geneity and device heterogeneity. 

Offloading classifications to DSP. To investigate the 
feasibility of offloading classification algorithms to the 
DSP and to show potential gains in energy efficiency, we 
implemented both activity recognition using SVMs and a 
speaker recognition app using GMMs. For the implemen-
tation, we used mobile development platforms with open 
programmable DSPs, including a Qualcomm Snapdragon 
development tablet and a TI Pandaboard, both running 
Android. We used Agilent 34410A digital multimeters for 
board-level energy measurements.
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FIGURE 2. Real inference accuracy of activity recognition. Using 
smartwatch sensors can result in a 35 percent improvement in 
inference accuracy compared with using smartphone sensors. 
SC1: watch accelerometer; SC2: phone accelerometer; SC3: 
watch and phone accelerometer; SC4: phone accelerometer and 
phone GPS; SC5: watch and phone accelerometer and phone GPS. 
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Table 4 shows the latency profiling result for activity rec-
ognition (SVM) and speaker recognition (GMM) classifica-
tions, executed on both a TI Pandaboard (OMAP4460 SoC) 
and a Qualcomm tablet (Snapdragon 800 SoC). We define 
latency as the time to classify one sample. Although run-
ning the classification on DSPs instead of CPUs incurs cer-
tain overhead in terms of latency, it is still well within the 
window size for feature computations: 400 ms for activity 
recognition and 3 s for speaker recognition (in other words, 
the current classification result will be valid until the next 
complete window). Offloading classifications to the DSP 
will lead to only negligible latency overhead. 

We then explored the energy implication brought by 
offloading computation to the DSP with the intuition that 
despite the increased latency, the DSP’s specialized instruc-
tion-set architecture will result in overall improvement in 
energy efficiency. Using the SVM classification in activity 
recognition as an example, we profiled the entire platform’s 
energy savings due to the offload. 

As shown in Table 5, offloading can result in 17 percent 
and 60 percent board-level energy savings from continu-
ous inference execution on the OMAP4 Pandaboard and the 
Qualcomm Snapdragon tablet, respectively. Note that the 
Snapdragon SoC has a more powerful and power-hungry 
CPU as well as a lower-power DSP than the OMAP4. This 
means that offloading computation to the DSP results in 
much larger energy savings on the Snapdragon.

Replacing high-energy sensors. As shown previously, 
using watch and phone accelerometers (SC3) for activity rec-
ognition can result in similar or even better real inference 
accuracy compared with solutions that only use phone GPS 
(SC4 and SC5). Table 6 shows the average power consump-
tion of a phone when activity recognition is running using 
different SCs. By replacing the phone’s location sensor used 
in activity recognition with the watch accelerometer, the 
phone consumes 61.0 percent and 35.5 percent less energy 
than when GPS locations and network locations are used, 
respectively. The improved inference accuracy and energy 
efficiency show that smartwatch sensors are capable of 
replacing high-energy phone sensors. 

We also consider the optimal partitioning of an infer-
ence pipeline between devices. Performing the entire 
inference pipeline in Figure 1 locally on the smartwatch 
(0.112 W) can help reduce up to 67 percent watch energy 
consumption, compared with performing only sampling 
and buffering on smartwatches and sending data to the 

phone via BLE (0.343 W). This ensures that executing con-
text inferences on smartwatches will not significantly 
affect their battery lives. 

CROSS-DEVICE FRAMEWORK
To assist inference apps in leveraging watch–phone collab-
oration for better inference accuracy and energy efficiency, 
we created an open source framework (github.com/nesl 
/ContextAwarenessToolkit) for composing context infer-
ences across devices, illustrated in Figure 3. Here, infer-
ences are managed by the inference manager running on 
the watch and the phone, which also coordinates the com-
munication if the same inference has both watch and phone 
components. The framework requires app developers to 
encapsulate inference apps into a set of modules, enabling 

TABLE 5. Device-level energy comparison 
with 20-s continuous support vector 

machine classification execution. 

Platform

Energy (J)

Savings (%)CPU DSP

Pandaboard 48.64 40.1 17

Snapdragon 45.66 18.49 60

TABLE 6. Nexus 5 energy comparison 
when running activity recognition with 

different sensor combinations. 

Sensor combination Phone power consumption (W)

Phone accelerometer + GPS 
location

0.788 

Phone accelerometer + network 
location 

0.508

Phone accelerometer + watch 
accuracy

0.307

TABLE 4. Performance overhead 
from offloading classifications.  

Processor Activity recognition 
latency (ms)

Speaker recognition 
latency (s)

OMAP4 CPU 1.320 0.043

OMAP4 DSP 9.232 0.704

Snapdragon CPU 0.357 0.018

Snapdragon DSP 3.625 0.075
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the inference manager to move them across devices by set-
ting their execution target (for example, phone/watch). 
The framework can also be extended to support schedul-
ing inference executions across heterogeneous proces-
sors when COTS smartphones and smartwatches ship with 
open-programmable low-power cores. 

Users configure the inference execution using a rule 
configurator and can prioritize saving the phone battery 
or the watch battery. The configurator enforces policies by 

controlling the inference managers on 
both devices accordingly, such as exe-
cuting inferences on other available 
devices if one device runs out of bat-
tery power or cannot capture mean-
ingful sensor data. With this frame-
work, the combined battery life of the 
phone, the watch, and other possible 
devices can be maximized based on 
the user’s preferences. 

We propose that context 
inferences can be executed 
across smartwatches and 

smartphones, and that certain stages 
of the inference pipeline can be off-
loaded from main app processors to 
DSPs to improve energy efficiency and 
inference accuracy in IoT devices. In 
the future, we plan to further demon-
strate the benefits of hardware het-
erogeneity, such as more efficient 
resource usage and task scheduling in 
concurrent inference executions, and 
investigate other aspects of context 
inferences, including data privacy and 
cross-platform support.  
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FIGURE 3. Proposed inference framework across smartphones and smartwatches. Mod-
ular context inferences can be executed across difference devices. LE: Low energy. 
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