
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E 	 J U N E 2 0 1 7 � 19

COVER FEATURE VLSI FOR THE INTERNET OF THINGS

Exploring Hardware
Heterogeneity to Improve
Pervasive Context
Inferences
Chenguang Shen and Mani Srivastava, University of California, Los Angeles

Context-aware inference apps have become pervasive

as a result of the Internet of Things (IoT). However,

most of these apps run continuously on a single device,

resulting in limited sensor coverage and high energy

consumption. Recent advances in IoT devices, specifically

hardware heterogeneity, can be leveraged to improve the

accuracy and energy efficiency of context inferences.

Advances in VLSI technologies have led to the
integration of unprecedented sensing, com-
munication, and computation capabilities
in today’s devices, allowing them to con-

tinuously observe individuals and their spaces. Smart-
phones have evolved from communication devices to
powerful personal computing platforms, and connected
devices such as smartwatches, cameras, motion sensors,
thermostats, and energy meters—collectively dubbed
the Internet of Things (IoT)—have rapidly permeated
our lives, leading to the emergence of an ecosystem of
context-aware apps. These apps—such as Moves, Map-
MyRun, Strava, Runkeeper, and Vimofit—use sensors

like GPS, microphones, accelerometers, and gyroscopes
to make diverse inferences about user activities and con-
texts, including transportation mode, location, physical
exercise, mood, and stress level. However, there are two
major drawbacks associated with the execution of con-
text inferences on IoT devices: limited sensor coverage
and inference accuracy, and high energy consumption.

Sensor coverage and inference accuracy are critical
for inference fidelity, which largely depends on the rel-
ative position of the sensing device to the user. Most of
today’s inference apps run on a single device, such as a
smartphone, and tend to rely on phone inertial sensor
readings, requiring users to carry their smartphone with

20	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VLSI FOR THE INTERNET OF THINGS

them. This means that whenever users leave the phone
elsewhere (for example, on a desk) to focus on other tasks
or to charge the phone, the sensors cannot capture any
meaningful data, resulting in limited sensor coverage and
poor inference accuracy.

In addition, many IoT devices are battery powered and
have a limited energy budget. The algorithms used by con-
text inference apps, including feature computations and
classifications, are computationally expensive and power
hungry. They often need to run continuously in the back-
ground for just-in-time feedback, notifications, and inter-
ventions. Currently, most always-on context inferences run
on the device’s main app processor, representing a signifi-
cant portion of the device’s overall workload and energy
consumption. This high power consumption is usually
exacerbated by the use of power-hungry sensors like GPS
and cellular radio.

In response, we propose leveraging advancements in IoT
devices, specifically hardware heterogeneity, to improve
the accuracy and energy efficiency of context inferences.
This includes both device and processor heterogeneity.

HARDWARE HETEROGENEITY
Using smartwatches as an example, we demonstrate the
use of heterogeneous IoT devices and processors to improve
context inferences.

Device heterogeneity
Unlike previous wearable devices dedicated to fitness
tracking, today’s commercial off-the-shelf (COTS) smart-
watches such as the Apple Watch (iOS) and the Moto 360
(Android) benefit from powerful hardware resources such
as CPUs and RAM similar to those of modern smartphones.
With seamless connection to phones via Bluetooth Low
Energy (BLE), these wearables can act as user portals for
smartphone apps or host standalone apps. These devices
also provide a rich set of sensors to support context infer-
ences. Their lightweight nature makes them ideal for
always-on context monitoring. Moreover, watches are less
obtrusive than phones because wearing them is less likely
to interfere with a user’s daily routine. By coordinating
smartwatches and smartphones, sensing and inference
workloads can be alternated between an available device at
any time for improved sensor coverage and inference accu-
racy. Using a watch and a phone for inference executions,
we achieved up to 37 percent improvement in inference
accuracy and up to 61 percent less energy consumption.

Processor heterogeneity
Modern mobile processors such as the Qualcomm Snapdragon
(www.qualcomm.com/products/snapdragon/processors) are
sophisticated systems on chip (SoCs), where the main app pro-
cessors are complemented by heterogeneous coprocessors.
We demonstrate the improvement of energy efficiency by
offloading computation from the main app processor (CPU)
to a secondary low-power processor. Recently, mobile chip
vendors have undertaken efforts to make these previously
hidden coprocessors—such as the digital signal processor
(DSP)—programmable. For instance, the Snapdragon 820
series SoC includes a Hexagon 680 DSP (developer.qualcomm
.com/software/hexagon-dsp-sdk/dsp-processor) that can be
custom-programmed and operates in the ultra-low-power
range. Offloading the classification stage commonly seen in
an inference pipeline to a DSP resulted in up to 60 percent
energy savings with a negligible effect on latency.

IoT device heterogeneity
To explore the benefits of leveraging device and processor
heterogeneity, we showcase the specifications of both IoT
devices and mobile SoCs.

Table 1 compares the hardware specifications of popu-
lar smartwatches and smartphones. Smartwatches today
have rather powerful CPUs, RAM, and radios, enabling
them to execute standalone apps without any assistance
from smartphones. Both the Apple Watch and the Moto
360 contain radios and sensors similar to today’s smart-
phones, including optical-based heart-rate sensors. How-
ever, because of volume and weight limits, smartwatches
have a much smaller battery capacity than smartphones.
Due to the similarity in smartwatch hardware, we chose
the Moto 360 as an example platform to benchmark our
app scenarios.

To further analyze the feasibility of running context
inferences on smartwatches, we created basic power pro-
files of a Moto 360 watch and a Nexus 5 phone (see Table 2).
We measured the power consumption of the watch and the
phone—both connected via BLE—and profiled both devices
for screen off (sleeping) and screen on, because their nor-
mal power consumption is typically between these two
extreme cases. Compared with the Nexus 5 phone, the Moto
360 watch generally has lower power consumption. How-
ever, the power difference between screen off and screen
on is much more significant on the watch than on the
phone, requiring a detailed study of the power and energy
tradeoffs of inference executions.

	 J U N E 2 0 1 7 � 21

Heterogeneous mobile SoCs
Mobile processors are no longer simply app processors, but are
sophisticated SoCs where the main app processors are com-
plemented by a set of heterogeneous processors. Table 3 sum-
marizes the specifications of mainstream mobile SoCs today.
The types of heterogeneity in mobile SoCs can be categorized
as loosely coupled or tightly coupled.

Loosely coupled. Mobile SoCs include a set of embedded
processors such as DSPs and GPUs that handle specialized
work such as media processing and low-level sensor I/O.
These loosely coupled heterogeneous processors typically
have no cache coherence with the app processor, and have a
different instruction-set architecture than app processors.
The coprocessors are usually hidden from the app develop-
ers and are instead limited to running prebuilt firmware
provided by the platform manufacturer. Recently, mobile
processor vendors have been making conscious efforts to
expose the coprocessor heterogeneity to the app developers,
allowing them to program the DSPs. The Hexagon DSP is a
representative example of such an embedded processor, so
we used it as an example of a secondary processor to show-
case the benefits of leveraging processor heterogeneity.

Tightly coupled. ARM’s big.LITTLE (www.arm.com/products
/processors/technologies/biglittleprocessing.php), which
couples relatively slower, lower-power processor cores with

more powerful and power-hungry ones, creates a multi-
core processor that can adjust better to dynamic comput-
ing needs and uses less power than clock scaling alone.
big.LITTLE is a tightly coupled heterogeneous architecture
because the big cores and the little cores typically have cache
coherence and share the same instruction-set architectures.
Nevertheless, they have different power-performance oper-
ating points. As shown in Table 3, major mobile SoC man-
ufacturers today all adopt the big.LITTLE architecture by
pairing big cores with LITTLE cores as app processors.

SYSTEM DESIGN
Our system design approach leverages hardware hetero-
geneity to improve inference accuracy and to reduce the
energy consumption of always-on context inferences.

Context-aware apps employ a suite of machine-learning
algorithms to extract semantically meaningful inferences
from sensor data. Underlying the various types of context
inferences, we abstracted out a canonical inference pipe-
line, shown in the upper part of Figure 1. Apps today typ-
ically subscribe to raw sensor datastreams, and extract
features to reduce the dimensionality of sensor data. Apps
then perform classification over the stream of extracted
features using pretrained machine-learning models. The
classification returns context labels (for example, which
class the current context falls under) for notifications and
corresponding actions.

TABLE 1. Comparison of device hardware platforms.

Device
System on
chip (SoC) CPU RAM Storage Radio Battery Weight Sensors

Apple
Watch

Apple S1 520
MHz S1

512
Mbytes

8 Gbytes Bluetooth Low Energy
(BLE)/Wi-Fi/near-field
communication (NFC)

3.8 V 205
mAh (milliamp
hours)

25 g Accelerometer, gyroscope,
pedometer, heart rate,
microphone

Moto 360
watch

TI OMAP
3630

1 GHz
OMAP3

512
Mbytes

4 Gbytes BLE/Wi-Fi 3.8 V 320
mAh

49 g Accelerometer, gyroscope,
pedometer, heart rate,
microphone, light

Nexus 5
phone

Snapdragon
800

2.3 GHz
Krait

2
Gbytes

16/32
Gbytes

BLE/Wi-Fi/NFC 4.3 V 2300
mAh

130 g Accelerometer, gyroscope,
pedometer, microphone,
compass, proximity, light, GPS

TABLE 2. Comparison of device power profiles.

Device Power (W) Current (mA) Lifetime (h)

Moto 360 watch (screen off) 0.013 3.283 97.472

Moto 360 watch (screen on) 0.550 142.520 2.245

Nexus 5 phone (screen off) 0.254 58.913 37.343

Nexus 5 phone (screen on) 1.853 435.260 5.057

22	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VLSI FOR THE INTERNET OF THINGS

Increasing inference accuracy
Instead of running inferences on a single smartphone, the
inference pipeline can run across heterogeneous devices.
The execution can be offloaded to another IoT device, such
as a smartwatch, whenever the phone is unavailable for bet-
ter sensor coverage and inference accuracy.

The hardware comparison previously mentioned sug-
gests that today’s smartwatches have powerful computa-
tion resources and sensors that enable apps to draw infer-
ences. Smartwatch users are more likely to wear the watch
throughout the day than they are to carry their phone with
them, except for specific periods such as sleep. Because
phone placement can greatly affect sensor readings (in other
words, a phone cannot capture meaningful human move-
ments when not being carried by the user), watches can
help increase sensor coverage and inference accuracy by
continuing the inference execution even when the phone is
away from the user. Such situations can be identified when
movements are detected by the watch but not by the phone.

Optimizing energy consumption
The energy benefit of leveraging hard-
ware heterogeneity is two-fold.

Offloading to low-power processors. To
show that considerable energy savings can
be achieved by offloading the execution of
inference algorithms from the main app
processor to the DSP available in mobile
SoCs, we offloaded the classification
stage as an example. Compared to feature
extraction, classification computation is
more unstructured, possibly leading to
larger energy savings by the DSP offload.

Replacing high-energy sensors. Sensors
on IoT devices, such as smartwatch iner-
tial sensors, can provide additional infor-
mation about user behaviors and contexts.

We use smartwatches as an example to represent heteroge-
neous IoT devices. By using smartwatches to run inferences,
we can reduce the energy consumption of apps by eliminating
the use of high-power sensors such as a phone’s GPS.

PRELIMINARY RESULTS
Here, we present a set of preliminary experimental results
to demonstrate the improvements in inference accuracy
and energy efficiency as a result of exploiting hardware
heterogeneity.

Example app scenarios
To investigate the feasibility of offloading classification
algorithms to the DSP and to show potential gains in energy
efficiency, we developed an activity recognition app and a
speaker recognition app as example context inferences.

Activity recognition. Motivated by prior work in the mobile
sensing space (see the “Related Work” sidebar), our activity

TABLE 3. Specifications of latest mobile SoCs.

Mobile SoC App processor (CPU) Coprocessor Used by

Qualcomm Snapdragon 821 Dual Kyro 2.15 GHz + Dual Kyro
1.59 GHz

Hexagon 680 digital signal
processor (DSP), Adreno 530 GPU

Google Pixel, Pixel XL

Apple A10 Dual Hurricane 2.34 GHz + Dual
Zephyr (ARMv8-A)

M10 motion processor, 6-core GPU Apple iPhone 7, iPhone 7 Plus

Samsung Exynos 8890 Quad Exynos M1 2.3 GHz + Quad
Cortex-A53 1.6 GHz

ARM Mali-T880 GPU Samsung Galaxy S7, Galaxy Note 7

HiSilicon Kirin 950/955 Quad Cortex-A72 2.5 GHz + Quad
Cortex-A53 1.8 GHz

ARM Mali-T880 GPU Huawei Mate 8, Huawei P9

NVIDIA Tegra X1 Quad Cortex-A72 1.9 GHz + Quad
Cortex-A53 1.3 GHz

Maxwell GPU NVIDIA Shield TV, Google Pixel C

Inference pipeline

Sensor
data

Data
 vector

Classi�cation

Feature
vector Context

label
Feature

extraction
Sensing and
 buffering

Mobile SoC

CPU
GPU

DSP

Heterogeneous
devices

Heterogeneous
processors

Mobile SoC

Execute

CPU
GPU

DSP

FIGURE 1. Overview of the proposed system architecture, which uses both heteroge-
neous devices and heterogeneous processors to achieve better inference accuracy and
energy efficiency. A canonical inference pipeline, which outputs context labels from
the sensor datastream, is shown in the upper section. SoC: system on chip; DSP: digital
signal processor.

	 J U N E 2 0 1 7 � 23

recognition app uses smartwatch accel-
erometers in addition to traditional
phone accelerometers. The app uses
machine-learning models to generate
activity labels and can be extended to
identify more classes of activities.

We used two datasets to train mod-
els and to benchmark the app. The first
one was collected by TU Darmstadt1 and
includes phone accelerometer data over a
seven-day time period and activity labels
of {dinner, commuting, lunch, work,
undefined}. The second dataset was col-
lected from our own user study where
participants recorded synchronized
watch accelerometer, phone accelerom-
eter, and phone GPS data as well as labels
of {still, walking, commuting}. The total
duration of this dataset is 6.33 h.

Speaker recognition. In this classical
speaker recognition app, we trained
a Gaussian mixture model (GMM) for
each speaker. A likelihood score was cal-
culated for each sound clip, represent-
ing the probability of the sample being
generated by the GMM. The speaker
corresponding to the maximum like-
lihood was set as the output. We used
the TIDIGITS dataset (catalog.ldc.upenn
.edu/ldc93s10) for training, and a set
of Mel-frequency cepstral coefficients
(MFCCs) featured on a 3-s sound clip at
8 kHz was used as one sample.

Experiment: improving
inference accuracy
We first quantified the accuracy
improvements of running activity rec-
ognition using both a Moto 360 watch
and a Nexus 5 phone instead of using
only a single phone.

Inference composition. The infer-
ence of activity recognition was com-
posed using several different sensor
combinations (SCs):

RELATED WORK

Although additional sensors and computational offloading are
found in prior approaches, they often rely on custom hard-

ware to improve the inference accuracy and energy efficiency.
Our work quantifies the benefit of leveraging hardware heteroge-
neity seen in commercial off-the-shelf devices. Recent work has
started using smartwatches to assist context inferences running
on smartphones, such as exercise tracking1 and driving habit
detection.2 In the field of computation offloading, Moo-Ryong Ra
and his colleagues examined the partitioning of different modules
in a sensing pipeline between processors to reduce the overall
energy consumption.3 Felix Xiaozhu Lin and his colleagues com-
pared loosely coupled heterogeneous processor cores with tightly
coupled ones.4 DSP.Ear5 and DeepEar6 demonstrate the perfor-
mance and energy implications of executing inferences as digital
signal processor (DSP) modules, including both traditional models
and deep neural networks.

We previously wrote about leveraging processor heterogeneity
in a workshop paper that focused on mobile phones but did not
cover device heterogeneity.7 The cross-device framework pre-
sented here in the main text is related to our previous work8 but
has a different and more specific implementation.

References
1.	 B.J. Mortazavi et al., “Determining the Single Best Axis for Exercise Repetition

Recognition and Counting on Smartwatches,” Proc. 11th Int’l Conf. Wearable and
Implantable Body Sensor Networks (BSN 14), 2014; doi:10.1109/BSN.2014.21.

2.	 L. Liu et al., “Toward Detection of Unsafe Driving with Wearables,” Proc. 2015
Workshop Wearable Systems and Applications (WearSys 15), 2015, pp. 27–32.

3.	 M.-R. Ra et al., “Improving Energy Efficiency of Personal Sensing Applications
with Heterogeneous Multi-processors,” Proc. 2012 ACM Conf. Ubiquitous Com-
puting (UbiComp 12), 2012; doi:10.1145/2370216.2370218.

4.	 F.X. Lin, Z. Wang, and L. Zhong, “Supporting Distributed Execution of Smart-
phone Workloads on Loosely Coupled Heterogeneous Processors,” Proc. 2012
USENIX Conf. Power-Aware Computing and Systems (HotPower 12), 2012; dl.acm
.org/citation.cfm?id=2387869.2387871.

5.	 P. Georgiev et al., “DSP.Ear: Leveraging Co-Processor Support for Continuous Au-
dio Sensing on Smartphones,” Proc. 12th ACM Conf. Embedded Network Sensor
Systems (SenSys 14), 2014, pp. 295–309.

6.	 N.D. Lane, P. Georgiev, and L. Qendro, “DeepEar: Robust Smartphone Audio
Sensing in Unconstrained Acoustic Environments Using Deep Learning,” Proc.
2015 ACM Int’l Joint Conf. Pervasive and Ubiquitous Computing (UbiComp 15),
2015, pp. 283–294.

7.	 C. Shen et al., “Exploiting Processor Heterogeneity for Energy Efficient Context
Inference on Mobile Phones,” Proc. Workshop Power-Aware Computing and Sys-
tems (HotPower 13), 2013, article no. 9.

8.	 C. Shen et al., “Beam: Ending Monolithic Applications for Connected Devices,”
Proc. 2016 USENIX Ann. Technical Conf. (USENIX ATC 16), 2016, pp. 143–157.

24	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VLSI FOR THE INTERNET OF THINGS

›› SC1: watch accelerometer only.
›› SC2: phone accelerometer only.
›› SC3: watch accelerometer and phone accelerometer.
›› SC4: phone accelerometer and phone GPS.
›› SC5: watch accelerometer, phone accelerometer, and
phone GPS.

We then calculated features from the raw sensor
datastream by applying a 1-s classification window, and
trained classification models such as decision tree, ran-
dom forest, and support vector machine (SVM) using
each SC. Based on our experiments, we chose to use the
decision tree for activity recognition considering both
accuracy and simplicity.

Results. Motivated by observations from our user study
where participants were asked to perform workout exercises
and activities while carrying a smartphone and wearing
a smartwatch, we created an example user daily schedule.
Based on the schedule, a user wears a smartwatch through-
out the entire day except while sleeping (16 h). On the other
hand, a user only carries a smartphone for half of the work-
ing day (4 h) plus while driving (1.5 h) and during lunch (0.5
h). The phone is with the user (and thus can capture mean-
ingful sensor data) for only 6 of the 16 hours in a day, and is
placed elsewhere for the remaining 10. Therefore, the total
duration of a user carrying both the watch and the phone
(TWithPhone) is 6 h each day, while the total duration of a user
carrying only the watch (TWithoutPhone) is 10 h.

We define real inference accuracy as a weighted average
of inference accuracy numbers considering the location of
the device:

Acc
Real

= 1
T
Total

Acc
WithPhone

× T
WithPhone

+ Acc
WithoutPhone

× T
WithoutPhone

⎛
⎝

⎞
⎠ .

� (1)

If the inference samples sensor data from the watch (such
as SC1, SC3, and SC5), AccWithPhone will be the inference

accuracy using sensors from both the phone and the watch,
and AccWithoutPhone will be the accuracy using only watch
sensors. If the inference takes only phone sensor data (such
as SC2 and SC4), AccWithPhone will be the accuracy using
only phone sensors. However, when the phone is placed else-
where (AccWithoutPhone), the inference cannot capture any
meaningful inertial data and the app has no way to infer
the user’s current activity other than performing a random
guess. Given that there are other heuristics to infer the user
activity, such as using GPS and time, we set AccWithoutPhone
in these cases to be 50 percent. Finally, TTotal is the total time
of the day except sleep (16 h).

Figure 2 shows the real inference accuracy of activity
recognition considering the routine above. Relying solely
on the phone sensors for activity recognition will lead to
poor real inference accuracy due to the phone’s limited
sensor coverage, as seen in SC2 (64.78 percent) and SC4
(65.51 percent). Accuracy is notably improved with the
help of smartwatches. Using only the watch sensor (SC1)
results in a real accuracy of 87.50 percent, or a 35.1 per-
cent improvement compared with using the phone only.
Moreover, fusing the watch and phone sensors together
improves the real accuracy of activity recognition to 87.85
percent, or by 35.6 percent, without the GPS (SC3), and to
89.01 percent, or by 37.4 percent, with the GPS (SC5). Note
that the classification model used here is relatively simple,
so the additional information provided by fusing both the
phone and watch accelerometers does not significantly
improve accuracy. However, using more sensors would
detect a wider range of movements if the app targets com-
plex activities such as exercise.

Experiment: optimizing energy consumption
Here, we describe the energy optimization of continuous
context inferences with the help of both processor hetero-
geneity and device heterogeneity.

Offloading classifications to DSP. To investigate the
feasibility of offloading classification algorithms to the
DSP and to show potential gains in energy efficiency, we
implemented both activity recognition using SVMs and a
speaker recognition app using GMMs. For the implemen-
tation, we used mobile development platforms with open
programmable DSPs, including a Qualcomm Snapdragon
development tablet and a TI Pandaboard, both running
Android. We used Agilent 34410A digital multimeters for
board-level energy measurements.

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0
SC1 SC2 SC3 SC4 SC5

Sensor combination

AccWithPhone (6 h)
AccWithoutPhone (10 h)
Real inference accuracy

FIGURE 2. Real inference accuracy of activity recognition. Using
smartwatch sensors can result in a 35 percent improvement in
inference accuracy compared with using smartphone sensors.
SC1: watch accelerometer; SC2: phone accelerometer; SC3:
watch and phone accelerometer; SC4: phone accelerometer and
phone GPS; SC5: watch and phone accelerometer and phone GPS.

	 J U N E 2 0 1 7 � 25

Table 4 shows the latency profiling result for activity rec-
ognition (SVM) and speaker recognition (GMM) classifica-
tions, executed on both a TI Pandaboard (OMAP4460 SoC)
and a Qualcomm tablet (Snapdragon 800 SoC). We define
latency as the time to classify one sample. Although run-
ning the classification on DSPs instead of CPUs incurs cer-
tain overhead in terms of latency, it is still well within the
window size for feature computations: 400 ms for activity
recognition and 3 s for speaker recognition (in other words,
the current classification result will be valid until the next
complete window). Offloading classifications to the DSP
will lead to only negligible latency overhead.

We then explored the energy implication brought by
offloading computation to the DSP with the intuition that
despite the increased latency, the DSP’s specialized instruc-
tion-set architecture will result in overall improvement in
energy efficiency. Using the SVM classification in activity
recognition as an example, we profiled the entire platform’s
energy savings due to the offload.

As shown in Table 5, offloading can result in 17 percent
and 60 percent board-level energy savings from continu-
ous inference execution on the OMAP4 Pandaboard and the
Qualcomm Snapdragon tablet, respectively. Note that the
Snapdragon SoC has a more powerful and power-hungry
CPU as well as a lower-power DSP than the OMAP4. This
means that offloading computation to the DSP results in
much larger energy savings on the Snapdragon.

Replacing high-energy sensors. As shown previously,
using watch and phone accelerometers (SC3) for activity rec-
ognition can result in similar or even better real inference
accuracy compared with solutions that only use phone GPS
(SC4 and SC5). Table 6 shows the average power consump-
tion of a phone when activity recognition is running using
different SCs. By replacing the phone’s location sensor used
in activity recognition with the watch accelerometer, the
phone consumes 61.0 percent and 35.5 percent less energy
than when GPS locations and network locations are used,
respectively. The improved inference accuracy and energy
efficiency show that smartwatch sensors are capable of
replacing high-energy phone sensors.

We also consider the optimal partitioning of an infer-
ence pipeline between devices. Performing the entire
inference pipeline in Figure 1 locally on the smartwatch
(0.112 W) can help reduce up to 67 percent watch energy
consumption, compared with performing only sampling
and buffering on smartwatches and sending data to the

phone via BLE (0.343 W). This ensures that executing con-
text inferences on smartwatches will not significantly
affect their battery lives.

CROSS-DEVICE FRAMEWORK
To assist inference apps in leveraging watch–phone collab-
oration for better inference accuracy and energy efficiency,
we created an open source framework (github.com/nesl
/ContextAwarenessToolkit) for composing context infer-
ences across devices, illustrated in Figure 3. Here, infer-
ences are managed by the inference manager running on
the watch and the phone, which also coordinates the com-
munication if the same inference has both watch and phone
components. The framework requires app developers to
encapsulate inference apps into a set of modules, enabling

TABLE 5. Device-level energy comparison
with 20-s continuous support vector

machine classification execution.

Platform

Energy (J)

Savings (%)CPU DSP

Pandaboard 48.64 40.1 17

Snapdragon 45.66 18.49 60

TABLE 6. Nexus 5 energy comparison
when running activity recognition with

different sensor combinations.

Sensor combination Phone power consumption (W)

Phone accelerometer + GPS
location

0.788

Phone accelerometer + network
location

0.508

Phone accelerometer + watch
accuracy

0.307

TABLE 4. Performance overhead
from offloading classifications.

Processor Activity recognition
latency (ms)

Speaker recognition
latency (s)

OMAP4 CPU 1.320 0.043

OMAP4 DSP 9.232 0.704

Snapdragon CPU 0.357 0.018

Snapdragon DSP 3.625 0.075

26	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VLSI FOR THE INTERNET OF THINGS

the inference manager to move them across devices by set-
ting their execution target (for example, phone/watch).
The framework can also be extended to support schedul-
ing inference executions across heterogeneous proces-
sors when COTS smartphones and smartwatches ship with
open-programmable low-power cores.

Users configure the inference execution using a rule
configurator and can prioritize saving the phone battery
or the watch battery. The configurator enforces policies by

controlling the inference managers on
both devices accordingly, such as exe-
cuting inferences on other available
devices if one device runs out of bat-
tery power or cannot capture mean-
ingful sensor data. With this frame-
work, the combined battery life of the
phone, the watch, and other possible
devices can be maximized based on
the user’s preferences.

We propose that context
inferences can be executed
across smartwatches and

smartphones, and that certain stages
of the inference pipeline can be off-
loaded from main app processors to
DSPs to improve energy efficiency and
inference accuracy in IoT devices. In
the future, we plan to further demon-
strate the benefits of hardware het-
erogeneity, such as more efficient
resource usage and task scheduling in
concurrent inference executions, and
investigate other aspects of context
inferences, including data privacy and
cross-platform support.

ACKNOWLEDGMENTS
This material is based in part on work sup-
ported by the NSF under award #1029030
and #1213140, by the National Institutes of
Health under award #U54EB020404, and
by the US Army Research Laboratory and
the UK Ministry of Defense under agree-
ment #W911NF-06-3-0001.

REFERENCE
1.	 T. Huynh, M. Fritz, and B. Schiele, “Discovery of Activity

Patterns Using Topic Models,” Proc. 10th Int’l Conf. Ubiqui-
tous Computing (UbiComp 08), 2008, pp. 10–19.

Watch inference
manager

...
...

Phone inference
manager

Bluetooth LE

Watch

Phone
UserModule move

Manage inference

Rule
con�gurator

Sensor
Sensor

Module 1

Module 2

Module N

Module 1

Module 2

Module N

Inference 1

...
...

Inference 1

FIGURE 3. Proposed inference framework across smartphones and smartwatches. Mod-
ular context inferences can be executed across difference devices. LE: Low energy.

ABOUT THE AUTHORS
CHENGUANG SHEN is a PhD candidate in computer science at the University
of California, Los Angeles (UCLA). His research focuses on developing a mobile
sensing framework for context awareness. Shen received an MS in computer
science from UCLA. Contact him at cgshen@ucla.edu.

MANI SRIVASTAVA is a professor in the Electrical Engineering and Computer
Science Department at UCLA. His research interests include wireless network-
ing, embedded systems, sensor networks, mobile and ubiquitous computing,
low-power and power-aware systems, and embedded technologies for health
and sustainability. Srivastava received PhD degrees in electrical engineering
and computer science from the University of California, Berkeley, and was with
Bell Laboratory Research before joining UCLA as a faculty member in 1997.
Contact him at mbs@ucla.edu.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org

